INTERACTION BETWEEN BETAMETHASONE AND VECCURONIUM

S. M. PARR, B. J. ROBINSON, D. REES AND D. C. GALLETTLY

SUMMARY
A possible interaction between betamethasone and vecuronium was examined in 20 rat phrenic nerve–hemidiaphragm preparations. Ten preparations were bathed in a physiological solution with betamethasone 1 μmol litre⁻¹ added and, after a 30-min period were exposed to vecuronium at concentrations of 4, 6, 8 and 10 μmol litre⁻¹ with vecuronium free washings between each exposure. Ten control experiments were performed also using a betamethasone-free bathing solution. In comparison with control, the betamethasone group had significantly (P = 0.0008) less depression of muscle contraction (twich) force at all concentrations of vecuronium. The calculated ED₉₀ (50% depression of muscle contraction force) was 5.65 μmol litre⁻¹ for controls and 7.39 μmol litre⁻¹ for betamethasone-pre-treated preparations. This study confirms our previous experimental observations that an interaction occurs between vecuronium and betamethasone which is characterized by resistance to neuromuscular block.

KEY WORDS

Steroids have been known for several years to facilitate neuromuscular function, and steroid induced resistance to competitive neuromuscular blocking drugs has been noted in three previous case reports [1-3]. Recently we reported two neurosurgical patients treated with betamethasone who had apparent resistance to vecuronium, and in a subsequent review of anaesthesia case records we found that patients treated with betamethasone required on average, 75% more vecuronium than patients not treated [4]. In this study we have attempted to demonstrate an interaction between betamethasone and vecuronium in a rat phrenic nerve–hemidiaphragm preparation.

MATERIALS AND METHODS
Male Dark Agouti rats (8–10 weeks) weighing 150–200 g were killed by cervical dislocation. The right and left hemidiaphragms with accompanying phrenic nerves were dissected out, placed horizontal in individual Res-Del organ baths and bathed with a physiological solution (RS-1 mammalian solution) aerated with 5% carbon dioxide in oxygen [5]. The composition of the solution is summarized in table I.

The bathing temperature was maintained at 34.5 ± 0.5°C and the muscle stretched to a basal preload tension of 4 g. Each preparation was attached to an isometric force transducer inserted through the central tendon of the hemidiaphragm and was stimulated indirectly using suction electrodes attached to the phrenic nerve, with a continuous biphasic double pulse (12-ms pulse interval) square wave at a supramaximal voltage of 0.1 ms duration at 0.2 Hz. Short periods (30 s) of direct muscle stimulation (supramaximal monophasic stimulation at 5 Hz) were performed also using muscle electrodes to exclude any local action of betamethasone or vecuronium on the muscle. Contractions were recorded isometrically and displayed on a pen chart recorder.

S. M. PARR, B.M., F.C.ANAES.; B. J. ROBINSON, B.Sc., M.Sc.; D. C. GALLETTLY, F.F.A.R.A.C.S., F.C.ANAES.; Section of Anaesthetics, Wellington School of Medicine, P.O. Box 7345, Wellington South, New Zealand; D. REES, B.Sc., Ph.D., School of Biological Sciences, Victoria University, Wellington, New Zealand. Accepted for Publication: March 21, 1991.
Correspondence to D.C.G.
Where possible, the preparations were used in pairs from the same rat, in independently perfused double organ baths with equal numbers of left/right hemidiaphragms used for each group. The flow rate of the perfusate was 2.0 ml min⁻¹. At least 30 min was allowed for a steady state to be achieved; muscle contraction (twitch) force measurements produced by indirect and direct stimulation of preparations in the absence of steroid or neuromuscular blocker were recorded.

One of the hemidiaphragm preparations was exposed to betamethasone 1 µmol litre⁻¹ for the duration of the investigation. All changes of perfusate solution commenced with a 40-ml flush (the volume of the organ bath) followed by perfusate 2 ml min⁻¹. Control and betamethasone treated preparations were exposed to vecuronium at concentrations of 4, 6, 8 and 10 µmol litre⁻¹. Muscle contraction force (both direct and indirect) was recorded 30 min after each change of perfusate containing vecuronium. Vecuronium-free solutions were used to wash the preparations until twitch height returned to control values, at which time the next vecuronium concentration was added.

To ensure that preparations had not deteriorated during the experimental period, data were not included in the analysis if the response to direct stimulation had decreased at the end of the experiment.

Statistics

Data from control and betamethasone groups were compared using analysis of covariance, with the dose of vecuronium as the covariate and terms for the control or betamethasone groups and for individual preparations within these groups. A test for difference in slope between the control group and betamethasone group was made by including a dose × group term in the model.

![Graph](image)

Fig. 1. Dose-response relationship for control (○) and betamethasone-pretreated (●) preparations (mean, S.E.M.). The E₉₀ for 50% depression of twitch height was 5.65 µmol litre⁻¹ for control and 7.39 µmol litre⁻¹ for betamethasone-pretreated preparations.

RESULTS

Satisfactory data were obtained from 20 hemidiaphragm preparations. Ten received betamethasone and 10 acted as control. No significant difference was observed in indirectly or directly stimulated mean twitch height before and after addition of betamethasone.

The slopes of the dose-response lines to vecuronium in control and betamethasone treated preparations were not significantly different (P = 0.14) (fig. 1). When a common slope was fitted, in
BETAMETHASONE AND VECURONIUM

comparison with control, the betamethasone group showed significantly \(P = 0.0008 \) less depression at all concentrations of vecuronium examined. The calculated ED\(50 \) for 50\% depression of twitch height was 5.65 \(\mu \)mol litre\(^{-1} \) for controls and 7.39 \(\mu \)mol litre\(^{-1} \) for betamethasone pretreated preparations. Thus the addition of betamethasone increased the ED\(50 \) for vecuronium by approximately 30\%.

DISCUSSION

In 1944, Torda and Wolff demonstrated that neuronal synthesis of acetylcholine could be increased by prior administration of adrenocorticotropic hormone (ACTH) [6]. They demonstrated also that, in the absence of ACTH (hypophysectomized rats), there was reduced acetylcholine synthesis resulting in neuromuscular dysfunction, which was restored following administration of ACTH [7].

Recent case reports suggest that an interaction between corticosteroids and the neuromuscular junction may have clinical implications for the anaesthetist. There have been two case reports of partial recovery from pancuronium given in association with steroid therapy [1, 2] and a case of resistance to vecuronium in a patient receiving long-term testosterone [3]. Following two cases of unexpected movement during neurosurgery in patients receiving vecuronium and pretreated with betamethasone, we performed a retrospective review of 50 neurosurgical patients, examining the doses of vecuronium administered to patients with and without betamethasone pretreatment. Those data suggested that patients pretreated with betamethasone were resistant to the neuromuscular blocking properties of vecuronium and required, on average, 75\% more blocking drug [4].

Animal studies that have examined the effects of tubocurarine in the presence of glucocorticoids have demonstrated resistance to the effects of the neuromuscular blocker in animals treated with prednisolone [8], dexamethasone [9], betamethasone [10] and triamcinolone [11, 12].

In this study we have demonstrated that the reduction in twitch tension caused by vecuronium was reduced considerably in the presence of betamethasone 1 \(\mu \)mol litre\(^{-1} \). Although the mechanism of this interaction is not fully understood, previous work suggests several possible sites where steroids may affect neuromuscular transmission:

(1) **Motor neurone**

Glucocorticoids have been shown to have a direct facilitatory effect at the impulse generating end of the motor nerve axon. In the ear, administration of large doses of methylprednisolone (8 mg kg\(^{-1}\) day\(^{-1}\) i.m.) for 1 week altered the electrical properties of spinal motor neurones and increased the excitability of the initial axon segment, the site of physiological impulse initiation [13].

(2) **The presynaptic nerve terminal**

Experimental work suggests that corticosteroids act presynaptically stimulating the synthesis, spontaneous release and stimulated release of acetylcholine.

(a) **Synthesis of acetylcholine.** The synthesis of acetylcholine is related directly to the supply of extraneural choline, which is transported by a sodium dependent carrier system located at the presynaptic membrane of the nerve terminal. Hemicholinium-3 is a presynaptic inhibitor of this carrier-mediated transport and virtually abolishes the synthesis of acetylcholine. Dexamethasone and prednisolone partially antagonize hemicholinium-3 [14] and increase acetylcholine synthesis in vitro by facilitating the uptake of choline and its subsequent incorporation into acetylcholine [15]. Electron micrographs of the neuromuscular junction support corticosteroid enhanced acetylcholine synthesis by revealing increases in the mean size of synaptic vesicles after incubation with prednisolone and dexamethasone [16].

(b) **Spontaneous release of acetylcholine.** Micromolar concentrations of prednisolone and dexamethasone have been shown to increase both the amplitude and frequency [17–19] of miniature end-plate potentials. These observations suggest that corticosteroids facilitate spontaneous release of acetylcholine.

(c) **Stimulated release of acetylcholine.** The application of small concentrations of prednisolone (1 \(\mu \)mol litre\(^{-1} \)) to the frog neuromuscular junction results in a doubling of nerve evoked end-plate currents. However, if prednisolone is added specifically to the end-plate via a micropipette,
such a response is not observed. This implies that
stimulated release of acetylcholine may be aug-
mented by corticosteroids acting at a presynaptic
site [20].

(3) Postsynaptic nerve terminal

In the rat, large concentrations of prednisolone
(0.6 mmol litre^-1) have a depressant effect on
neuromuscular transmission. However, dexam-
ethasone counteracts the suppression of con-
traction caused by tubocurarine at small concen-
trations, but this effect is not observed when
greater concentrations of steroid are used [9]. It
has been suggested, therefore, that the presynaptic
facilitatory effects of small concentrations of
corticosteroids on acetylcholine release may be
overcome by a greater postsynaptic depressant
effect at large concentrations [21]. This may
explain why some workers have failed to dem-
strate any evidence of recovery from tubo-
curarine after administration of prednisolone [22].

The evidence suggests that the major site of the
facilitatory actions of corticosteroids at the neu-
romuscular junction is prejunctional and it seems
feasible that the attenuation of competitive neu-
romuscular block observed in our study is a conse-
cuence of steroid-induced enhancement of
acetylcholine synthesis and release.

A prejunctional reduction in release of acetyl-
choline by vecuronium, in addition to post-
junctional receptor block, has been reported using
in vitro toad neuromuscular preparations [23].
However, conclusions made from in vitro neu-
romuscular preparations investigating presynaptic
modulation are limited [24] and the presence of
autoregulating presynaptic acetylcholine recep-
tors at the motor end-plate area has been
questioned [25]. Perhaps of more clinical rele-
vance are the observations of Baker and his
colleagues in anaesthetized cats. They reported a
biphasic prejunctional effect of vecuronium; at
small concentrations of vecuronium, acetylcholine
release was increased, while at greater concen-
trations acetylcholine release was reduced [26].
This may indicate that vecuronium interacts with two
distinct populations of presynaptic acetylcholine
receptors [24] or that the in situ effects of
cholinergic antagonists (or agonists) on neu-
romuscular transmission are mediated, in part, by
the central nervous system [25]. Whether the
interaction between vecuronium and beta-
methasone occurs at presynaptic cholinergic
receptors has not been demonstrated in this

BRITISH JOURNAL OF ANAESTHESIA

report, but it would be of interest to examine
further the interaction at the neuromuscular
junction between corticosteroids and other
cholinergic agonists–antagonists in terms of pre-
and postjunctional effects.

ACKNOWLEDGEMENTS

This study was supported by the Wellington Medical Research
Foundation and the Wellington Anaesthesia Trust. We thank
Mr G. Purdie for statistical advice.

REFERENCES

1. Meyers EF. Partial recovery from pancuronium neu-
romuscular blockade following hydrocortisone administra-

2. Lafin MJ. Interaction of pancuronium and cortico-

muscle relaxants in a patient receiving prolonged tes-
tostereone therapy. Anesthesiology 1989; 70: 871–873.

4. Parr SM, Galletly DC, Robinson BJ. Betamethasone
induced resistance to vecuronium: a potential problem in
neurosurgery? Anaesthesia and Intensive Care 1991; 19:
103–105.

5. Rees D. Consideration of the inorganic and organic
composition of mammalian perfusion solutions. In:
Dixson MJ, Dehner H, eds. Isolated Perfused Organ
Preparations. March: Biomatechnik-Verlag, 1989: 85–
94.

6. Torda C, Wolff HG. Effect of adrenocorticotropic hormone of
pituitary gland on ability of tissue to synthesize
acetylcholine. Proceedings of the Society for Experimental
Biology and Medicine 1944; 57: 137–139.

7. Torda C, Wolff HG. Effects of hypophysectomy and
adrenocorticotrophic hormone on neuromuscular function
and acetylcholine synthesis. American Journal of Physi-

8. Arz WF, Ottenhof M. Effect of prednisolone on
neuromuscular blocking in mice in vivo. Neurology 1975;

9. Leeuwijn RS, Veldhuis-Currie RD, Vanden Wijngaard
H, Ottenhof M. Effects of corticosteroids on neuromuscular
blocking actions of d-tubocurarine. European Journal of

10. Webb SN, Parker SG. Effect of corticosteroids on partially
curarized skeletal muscle. International Congress of Phar-

11. Riker WF, Hall ED, Baker T. Glucocorticoid unmasking
of an anti-curare action of curare. Pharmacologist 1977;
19: 197.

12. Hall ED. Glucocorticoid modification of the respons-
siveness of a fast (type 2) neuromuscular system to
dexphramonium and d-tubocurarine. Experimental Neu-

13. Hall ED. Glucocorticoid effects on the electrical proper-
ties of spinal motor neurons. Brain Research 1982; 240:

14. Wolters ECHMJ, Leeuwijn RS. Effects of corticosteroids
on the phrenic nerve–diaphragm preparation treated with

15. Veldhuis-Currie RD, Wolters ECHMJ, Leeuwijn RS.

