EFFECT OF RES-DEL® RS-C SOLUTION ON THE VIABILITY OF ISOLATED RAT HEART PREPARATIONS OVER 1-6 HOURS OF CARDIOPLEGIC ARREST

D Rees and L.J. Clissold, School of Biological Sciences, Victoria University of Wellington, New Zealand.

Numerous cardioplegic solutions to date have been utilised by cardiothoracic surgeons to cause cessation of both mechanical and electrical activity of the human heart during coronary by-pass surgery. The surgical procedures last for 45-100 min. during which time there can be no escape from cardioplegic arrest and no ventricular fibrillation upon re-animation of the arrested heart. The criteria defined above for an ideal cardioplegic solution have been met using Res Del® RS-C solution containing 50 mg L\(^{-1}\) chloromycetin in preliminary experiments on the isolated Langendorff rat heart preparation maintained in a Res-Del® Perfusion Bath system. Initial experiments have indicated, in comparison to phosphate buffered St Thomas (STS) and Celsior® cardioplegic solutions, that recovery of RS-C cardioplegic rat hearts was far superior, giving 100-165% recovery of cardiac function following 1-6 h of cardioplegic arrest at either 20-25 °C or 35 °C with no occurrence of ventricular fibrillation. Preliminary experiments using the non-paced, working rat heart in a comparison of the cardiac performance during perfusion with Krebs-Henseleit (+2 mmol. L\(^{-1}\) pyruvate) and RS-I solutions have indicated (1) that in RS-I mammalian solution cardiac performance was 700% greater and coronary flow rates 300% greater than those observed in Krebs-Henseleit solution.
